首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6030篇
  免费   1031篇
  国内免费   201篇
电工技术   175篇
综合类   296篇
化学工业   2298篇
金属工艺   195篇
机械仪表   203篇
建筑科学   327篇
矿业工程   115篇
能源动力   154篇
轻工业   211篇
水利工程   105篇
石油天然气   89篇
武器工业   14篇
无线电   699篇
一般工业技术   758篇
冶金工业   192篇
原子能技术   36篇
自动化技术   1395篇
  2024年   13篇
  2023年   148篇
  2022年   126篇
  2021年   411篇
  2020年   331篇
  2019年   225篇
  2018年   327篇
  2017年   284篇
  2016年   320篇
  2015年   328篇
  2014年   519篇
  2013年   416篇
  2012年   314篇
  2011年   439篇
  2010年   321篇
  2009年   327篇
  2008年   290篇
  2007年   301篇
  2006年   288篇
  2005年   206篇
  2004年   175篇
  2003年   169篇
  2002年   139篇
  2001年   107篇
  2000年   91篇
  1999年   83篇
  1998年   77篇
  1997年   75篇
  1996年   49篇
  1995年   35篇
  1994年   55篇
  1993年   42篇
  1992年   35篇
  1991年   21篇
  1990年   17篇
  1989年   16篇
  1988年   19篇
  1987年   9篇
  1986年   8篇
  1985年   13篇
  1984年   26篇
  1983年   13篇
  1982年   9篇
  1981年   8篇
  1980年   7篇
  1979年   9篇
  1978年   5篇
  1977年   7篇
  1976年   2篇
  1963年   2篇
排序方式: 共有7262条查询结果,搜索用时 15 毫秒
11.
12.
In the last few decades, global warming, environmental pollution, and an energy shortage of fossil fuel may cause a severe economic crisis and health threats. Storage, conversion, and application of regenerable and dispersive energy would be a promising solution to release this crisis. The development of porous carbon materials from regenerated biomass are competent methods to store energy with high performance and limited environmental damages. In this regard, bio-carbon with abundant surface functional groups and an easily tunable three-dimensional porous structure may be a potential candidate as a sustainable and green carbon material. Up to now, although some literature has screened the biomass source, reaction temperature, and activator dosage during thermochemical synthesis, a comprehensive evaluation and a detailed discussion of the relationship between raw materials, preparation methods, and the structural and chemical properties of carbon materials are still lacking. Hence, in this review, we first assess the recent advancements in carbonization and activation process of biomass with different compositions and the activity performance in various energy storage applications including supercapacitors, lithium-ion batteries, and hydrogen storage, highlighting the mechanisms and open questions in current energy society. After that, the connections between preparation methods and porous carbon properties including specific surface area, pore volume, and surface chemistry are reviewed in detail. Importantly, we discuss the relationship between the pore structure of prepared porous carbon with surface functional groups, and the energy storage performance in various energy storage fields for different biomass sources and thermal conversion methods. Finally, the conclusion and prospective are concluded to give an outlook for the development of biomass carbon materials, and energy storage applications technologies. This review demonstrates significant potentials for energy applications of biomass materials, and it is expected to inspire new discoveries to promote practical applications of biomass materials in more energy storage and conversion fields.  相似文献   
13.
Polymer electrets have revealed great potential application in electromechanical devices because of the low weight, large quasi-piezoelectric sensitivity, and excellent flexibility. For an electret, a permanent and macroscopic electric field exists on the surface, principally led by a macroscopic electrostatic charge on the surface or a net orientation of polar groups inside the object. Here, progress in the development of polymer electrets is reviewed. After a brief retrospect of the research courses and those typical polymer electrets that are classified into fluorine polymer and nonfluorine polymer, we present a survey on the charging methods, including corona, soft X-ray, contact, thermal and monoenergetic particle beams. The latest representative applications (i.e., power harvesting, sensors, field effect transistors, and biomedicine) based on polymer electrets are also summarized. Finally, we complete this review with a discussion on perspectives and challenges in this field.  相似文献   
14.
KH550, KH560, CTAB, and F127 were adopted to modify silicon (Si) to improve the dispersity and stability of Si in the polyacrylonitrile/dimethyl sulfoxide (PAN/DMSO) polymer solutions. The influence of surfactants on rheological behaviors of PAN/DMSO/Si blending polymer solutions was investigated by an advanced solution and melt rotation rheometer. The homogeneity and stability were also studied. The results showed that the surfactants could change the viscosity dependence of blending polymer solutions on shear rate, temperature and storage time by increase the steric hindrance of Si. Among the four solutions, PAN/DMSO/Si blending polymer solution with F127 exhibited the lowest viscosity, activation energy and the smallest structural viscosity index and exhibited the trend close to the Newtonian fluids. Moreover, PAN/DMSO/Si blending polymer solution with F127 exhibited the best dispersity and stability, indicating its best physical properties and machinability.  相似文献   
15.
16.
The surface texturing of ceramics is generally performed through acid-based etching and machining; however, laser texturing may be considered as a more precise, reproducible and eco-friendly process. Furthermore, laser ablation may be used to produce complex patterns on ceramic surfaces, thus offering new surface engineering opportunities. The studies so far conducted on this topic have mainly been application-driven, and since a wide variety of lasers have been used for surface texturing, it is difficult to have a comprehensive understanding of this technique applied to ceramics and ceramic composite materials. Laser texturing requires a great deal of knowledge of the material and the laser source parameters to optimise the process in order to obtain the expected results. It is therefore important to expand the research on the laser texturing of ceramics and CMCs in order to build a relevant amount of literature that can be used to identify the most appropriate parameters for each application. This review provides an overview of most of the technological aspects considered relevant for the laser surface texturing of ceramics and CMCs, and includes the fundamentals of laser-material interactions and a summary of the used equipment and parameters. Furthermore, most of the techniques related to the modifications of surface material induced by a laser are critically reviewed, and the new horizons that are opening up, in the context of the modification of surfaces to improve the performances of materials for several applications, are discussed.  相似文献   
17.
Protein assemblies provide unique structural features which make them useful as carrier molecules in biomedical and chemical science. Protein assemblies can accommodate a variety of organic, inorganic and biological molecules such as small proteins and peptides and have been used in development of subunit vaccines via display parts of viral pathogens or antigens. Such subunit vaccines are much safer than traditional vaccines based on inactivated pathogens which are more likely to produce side-effects. Therefore, to tackle a pandemic and rapidly produce safer and more effective subunit vaccines based on protein assemblies, it is necessary to understand the basic structural features which drive protein self-assembly and functionalization of portions of pathogens. This review highlights recent developments and future perspectives in production of non-viral protein assemblies with essential structural features of subunit vaccines.  相似文献   
18.
Ge2Sb2Tes is the most widely utilized chalcogenide phase-change material for non-volatile photonic applications,which undergoes amorphous-cubic and cubic-hexagonal phase transition under external excitations.However,the cubic-hexagonal optical contrast is negligible,only the amorphous-cubic phase transition of Ge2Sb2Te5 is available.This limits the optical switching states of traditional active dis-plays and absorbers to two.We find that increasing structural disorder difference of cubic-hexagonal can increase optical contrast close to the level of amorphous-cubic.Therefore,an amorphous-cubic-hexagonal phase transition with high optical contrast is realized.Using this phase transition,we have developed display and absorber with three distinct switching states,improving the switching perfor-mance by 50%.Through the combination of first-principle calculations and experiments,we reveal that the key to increasing structural disorder difference of amorphous,cubic and hexagonal phases is to intro-duce small interstitial impurities(like N)in Ge2Sb2Tes,rather than large substitutional impurities(like Ag)previously thought.This is explained by the formation energy and lattice distortion.Based on the impurity atomic radius,interstitial site radius and formation energy,C and B are also potential suit-able impurities.In addition,introducing interstitial impurities into phase-change materials with van der Waals gaps in stable phase such as GeSb4Te7,GeSb2Te4,Ge3Sb2Te6,Sb2Te3 will produce high optical con-trast amorphous-metastable-stable phase transition.This research not only reveals the important role of interstitial impurities in increasing the optical contrast between metastable-stable phases,but also proposes varieties of candidate matrices and impurities.This provides new phase-change materials and design methods for non-volatile optical devices with multi-switching states.  相似文献   
19.
《Ceramics International》2022,48(7):8987-9005
Metallic implants sometimes fail in orthopedic surgeries due to insufficient bio-functionality, implant-associated infections, poor osteointegration due to high inertness (Ti, Co–Cr, stainless steel alloys), and a too fast degradation rate (Mg-based alloys). Bioceramic coatings are among the most appropriate solutions for overcoming these drawbacks. After providing a picture of the history as well as the pros and cons of the different types of metallic implants, this review focuses on bioceramic coatings that can be applied on them, including metal oxides, calcium phosphates, silicates, glasses, glass-ceramics, carbon, etc. Various coating strategies and applications are described and discussed, with emphasis on a selected number of highly promising researches. The major trends and future directions in the development of bioceramic coatings are finally suggested.  相似文献   
20.
Bioactive glasses (BGs) have been used for bone formation and bone repair processes in recent years. This study investigated the titanium substitution effect on 58S BGs (Ti-BGs) 60SiO2-(36 − X)CaO-4P2O5-XTiO2 (X = 0, 3, and 5 mol.%) prepared by the sol-gel technique, and the main goal was to find the optimum amount of titanium in Ti-BGs. Synthesized BGs, which were investigated after immersion in simulated body fluid (SBF), were tested by X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy. Moreover alkaline phosphate (ALP) activity, 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and antibacterial studies were employed to investigate the biological properties of Ti-BGs. According to the FTIR and XRD test results, hydroxyapatite (HA) formation on Ti-BGs surfaces was confirmed. Meanwhile, the presence of 5 mol.% compared to 3 mol.% increased the HA grain distribution and their size on the Ti-BGs surface. Additionally, MTT and ALP results confirmed that the optimal amount of titanium substitution in BG was 5 mol.%. Since 5 mol.% Ti incorporated BG (BG-5) had the highest biocompatibility level, antibacterial properties, maximum cell proliferation, and ALP activity among the synthesized Ti-BGs, it is presented as the best candidate for further in vivo investigations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号